Skip to content Skip to sidebar Skip to footer

Anabolisme karbohidrat



BAB I
PENDAHULUAN

A.    Latar Belakang
Anabolisme adalah lintasan metabolisme yang menyusun beberapa senyawa organik sederhana menjadi senyawa kimia atau molekul kompleks. Proses ini membutuhkan energi dari luar. Energi yang digunakan dalam reaksi ini dapat berupa energi cahaya ataupun energi kimia. Energi tersebut, selanjutnya digunakan untuk mengikat senyawa-senyawa sederhana tersebut menjadi senyawa yang lebih kompleks. Jadi, dalam proses ini energi yang diperlukan tersebut tidak hilang, tetapi tersimpan dalam bentuk ikatan-ikatan kimia pada senyawa kompleks yang terbentuk. Anabolisme meliputi tiga tahapan dasar. Pertama, produksi prekursor seperti asam amino, monosakarida, dan nukleotida. Kedua, adalah aktivasi senyawa-senyawa tersebut menjadi bentuk reaktif menggunakan energi dari ATP. Ketiga, penggabungan prekursor tersebut menjadi molekul kompleks, seperti protein, polisakarida, lemak, dan asam nukleat.
 Anabolisme yang menggunakan energi cahaya dikenal dengan fotosintesis, sedangkan anabolisme yang menggunakan energy kimia dikenal dengan kemosintesis. Hasil-hasil anabolisme berguna dalam fungsi yang esensial. Hasil-hasil tersebut misalnya glikogen dan protein sebagai bahan bakar dalam tubuh, asam nukleat untuk pengkopian informasi genetik. Protein, lipid, dan karbohidrat menyusun struktur tubuh makhluk hidup, baik intraselular maupun ekstraselular. Bila sintesis bahan-bahan ini lebih cepat dari perombakannya, maka organisme akan tumbuh.
Anabolisme karbohidrat merupakan serangkaian reaksi kimia yang substrat awalnya adalah molekul kecil dan produk akhirnya adalah molekul besar atau dengan kata lain reaksi yang bertujuan untuk penyusunan atau sintesis molekul. Mahasiswa Biologi memiliki tuntutan untuk dapat memahami anabolisme karbohidrat sebagai konsekuensi atas bidang ilmunya dan juga sebagai rasa syukur terhadap fasilitas yang telah Allah ciptakan.

B.     Rumusan Masalah
Berdasarkan latar belakang di atas, rumusan masalah dari makalah ini adalah:
1.      Apa pengertian dari anabolisme karbohidrat?
2.      Proses apa saja yang termasuk dalam anabolisme karbohidrat?
BAB II
PEMBAHASAN
A.    Anabolisme Karbohidrat
Anabolisme adalah suatu peristiwa perubahan senyawa sederhana menjadi senyawa kompleks, nama lain dari anabolisme adalah peristiwa sintesis atau penyusunan. Anabolisme memerlukan energi, misalnya : energi cahaya untuk fotosintesis, energi kimia untuk kemosintesis.
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjPvT_45ClJOW4Tkuz66iEJGvUnybXXlapkYPCwQXlBNM5VsoLqK1YIRSuI4pOazjovBGlOonOBa8fMEtjiZgxlZdYkiEpnbtme_asRmdIj7sXEN6I8alD5Re8Ng8_qaeeq3v6ltoHpdd8/s320/anabolisme+K.jpg
Anabolisme meliputi tiga tahapan dasar. Pertama, produksi prekursor seperti asam amino, monosakarida, dan nukleotida. Kedua, pengaktivasian senyawa-senyawa tersebut menjadi bentuk reaktif menggunakan energi dari ATP. Ketiga, penggabungan prekursor tersebut menjadi molekul kompleks, seperti protein, polisakarida, lemak, dan asam nukleat. Anabolisme yang menggunakan energi cahaya dikenal dengan fotosintesis, sedangkan anabolisme yang menggunakan energi kimia dikenal dengan kemosintesis.
1.      Fotosintesis
Salah satu contoh peristiwa anabolisme karbohirat adalah fotosintesis. Fotosintesis adalah proses pengubahan zat organik (karbohidrat) dengan pertolongan cahaya. Organel yang berperan dalam fotosintesis adalah kloroplas. Di dalam kloroplas inilah penyerapan sinar oleh klorofil dimulai pada proses fotosíntesis. Kloroplas dibungkus oleh dua lapisan (membran). Membran dlam berupa suatu membran yang kompleks. Pada membran ini terdapat beberapa lapisan kantong yang rata, disebut granum. Di dalam seluruh granum terdapat larutan protein yang disebut stroma.
Arti fotosintesis adalah proses penyusunan atau pembentukan dengan menggunakan energi cahaya atau foton. Sumber energi cahaya alami adalah matahari yang memiliki spektrum cahaya infra merah (tidak kelihatan), merah, jingga, kuning, hijau, biru, nila, ungu dan ultra ungu (tidak kelihatan). Yang digunakan dalam proses fetosintesis adalah spektrum cahaya tampak, dari ungu sampai merah, infra merah dan ultra ungu tidak digunakan dalam fotosintesis. Dalam fotosintesis, dihasilkan karbohidrat dan oksigen, oksigen sebagai hasil sampingan dari fotosintesis, volumenya dapat diukur, oleh sebab itu untuk mengetahui tingkat produksi fotosintesis adalah dengan mengatur volume oksigen yang dikeluarkan dari tubuh tumbuhan.
Untuk membuktikan bahwa dalam fotosintesis diperlukan energi cahaya matahari, dapat dilakukan percobaan Ingenhousz. Senyawa kompleks yang disintesis organisme tersebut adalah senyawa organik atau senyawa hidrokarbon. Autotrof, seperti tumbuhan, dapat membentuk molekul organik kompleks di sel seperti polisakarida dan protein dari molekul sederhana seperti karbon dioksida dan air. Di lain pihak, heterotrof, seperti manusia dan hewan, tidak dapat menyusun senyawa organik sendiri. Jika organisme yang menyintesis senyawa organik menggunakan energi cahaya disebut fotoautotrof, sementara itu organisme yang menyintesis senyawa organik menggunakan energi kimia disebut kemoautotrof.
Proses fotosintesis yang terjadi di kloroplas berlangsung melalui dua tahap reaksi yaitu, reaksi terang (memerlukan cahaya) dan reaksi gelap (tidak memerlukan cahaya).
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhqyRlyoffzwIvA5RjBvG5-hSsvIA9-qfKoMnRD4qbjB7zgsv02sdMSter_hNvdcsrOEpcYeqCbBfxyaeE0HyEI5ArbqmjOfX8CRIqclwyqFHWx5E-JBvsBjV-no0KgEtr6jLjmGb4Q2HE/s320/fotosintesis.jpg


a.       Reaksi terang
Pada tahap pertama, energi matahari ditangkap oleh pigmen penyerap cahaya dan diubah menjadi bentuk energi kimia, ATP, dan senyawa pereduksi NADPH. Proses ini disebut tahap reaksi terang. Atom hidrogen dari molekul H2O dipakai untuk mereduksi NADP+ menjadi NADPH, dan O2 dilepaskan sebagai hasil samping reaksi fotosintesis. Reaksi ini juga dirangkaikan dengan reaksi endergonik, membentuk ATP dari ADP + Pi. Dengan demikian, reaksi terang dapat dituliskan dengan persamaan:
Pembentukan ATP dari ADP + Pi, merupakan suatu mekanisme penyimpanan energi matahari yang diserap kemudian diubah menjadi bentuk energi kimia. Proses ini disebut      fosforilasi fotosintesis atau fotofosforilasi. Pada reaksi terang yang terjadi di grana, energi cahaya memacu pelepasan elektron dari fotosistem di dalam membran tilakoid. Fotosistem adalah tempat berkumpulnya beratus-ratus molekul pigmen fotosintesis. Aliran elektron melalui sistem transpor menghasilkan ATP dan NADPH. ATP dan NADPH dapat terbentuk melalui jalur non siklik, yaitu elektron mengalir dari molekul air, kemudian melalui fotosistem II dan fotosistem I. Elektron dan ion hidrogen akan membentuk NADPH dan ATP. Oksigen yang dibebaskan berguna untuk respirasi aerob. Pusat reaksi pada fotosistem I mengandung klorofil a, disebut sebagai P700, karena dapat menyerap foton terbaik pada panjang gelombang 700 nm. Pusat reaksi pada fotosistem II mengandung klorofil a yang disebut sebagai P680, karena dapat menyerap foton terbaik pada panjang gelombang 680 nm.
b.      Reaksi gelap (reaksi tidak tergantung cahaya)
Disebut juga siklus Calvin-Benson. Reaksi ini disebut reaksi gelap, karena tidak tergantung secara langsung dengan cahaya matahari. Reaksi gelap terjadi di stroma. Namun demikian, reaksi ini tidak mutlak terjadi hanya pada kondisi gelap. Reaksi gelap memerlukan ATP, hidrogen, dan elektron dari NADPH, karbon dan oksigen dari karbondioksida, enzim yang mengkatalisis setiap reaksi, dan RuBp (Ribulosa bifosfat) yang merupakan suatu senyawa yang mempunyai 5 atom karbon. Reaksi gelap terjadi melalui beberapa tahapan, yaitu:
§  Karbondioksida diikat oleh RuBp (Ribulosa bifosfat yang terdiri atas 5 karbon) menjadi senyawa 6 karbon yang labil. Senyawa 6 karbon ini kemudian memecah menjadi 2 fosfogliserat (PGA).
§  Masing-masing PGA menerima gugus pfosfat dari ATP dan menerima hidrogen serta e- dari NADPH. Reaksi ini menghasilkan PGAL (fosfogliseraldehida).
§  Tiap 6 molekul karbon dioksida yang diikat dihasilkan 12 PGAL.
§  Dari 12 PGAL, 10 molekul kembali ke tahap awal menjadi RuBp, dan seterusnya RuBp akan mengikat CO2 yang baru.
§  Dua PGAL lainnya akan berkondensasi menjadi glukosa 6 fosfat. Molekul ini merupakan prekursor (bahan baku) untuk produk akhir menjadi molekul sukrosa yang merupakan karbohidrat untuk diangkut ke tempat penimbunan tepung pati yang merupakan karbohidrat yang tersimpan sebagai cadangan makanan.

B.     Proses Anabolisme Karbohidrat
Jalur anabolisme yang membentuk senyawa-senyawa dari prekursor sederhana mencakup:
1.      Glikogenesis, pembentukan glikogen dari glukosa.
Glikogenesis adalah lintasan metabolisme yang mengkonversi glukosa menjadi glikogen untuk disimpan di dalam hati. Lintasan ini diaktivasi di dalam hati, oleh hormon insulin sebagai respon terhadap rasio gula darah yang meningkat, misalnya karena kandungan karbohidrat setelah makan; atau teraktivasi pada akhir siklus Cori.
2.      Penyimpangan atau kelainan metabolisme pada lintasan ini disebut glikogenosis.
Glukoneogenesis, pembentukan glukosa dari senyawa organik lain.
Glukoneogenesis adalah lintasan metabolisme yang digunakan oleh tubuh, selain glikogenolisis, untuk menjaga keseimbangan kadar glukosa di dalam plasma darah untuk menghindari simtoma hipoglisemia. Pada lintasan glukoneogenesis, sintesis glukosa terjadi dengan substrat yang merupakan produk dari lintasan glikolisis, seperti asam piruvat, asam suksinat, asam laktat, asam oksaloasetat, terkecuali: 
3.      Jalur sintesis porfirin
Porfirin adalah senyawa siklik yang dibentuk dari gabungan empat cincin pirol melalui jembatan metenil (-CH=). Sifat khas porfirin adalah pembentukan kompleks dengan ion-ion logam (metaloporfirin) yang terikat pada atom nitrogen cincin-cincin pirol. Sebagai contoh misalnya heme yang merupakan porfirin besi dan klorofil, merupakan porfirin magnesium.
Di alam, metaloporfirin terkonjugasi dengan protein membentuk senyawa-senyawa penting dalam proses biologi, antara lain: (1) Hemoglobin, merupakan porfirin besi yang terikat pada protein globin dan mempunyai fungsi penting pada mekanisme transport oksigen dalam darah;(2) Mioglobin, merupakan pigmen pernafasan yang terdapat dalam sel-sel otot; (3) Sitokrom, berperan sebagai pemindah elektron (electron transfer) pada proses oksidasi reduksi. 
Porfirin mengandung nitrogen tersier pada 2 cincin pirolen sehingga bersifat basa lemah dan adanya gugus karboksil pada rantai sampingnya menyebabkan juga bersifat asam. Titik isoelektriknya berkisar pada pH 3-4, sehingga pada pH trersebut porfirin mudah diendapkan dalam larutan air. Berbagai jenis porfirinogen tidak berwarna, sedangkan berbagai jenis porfirin berwarna. Porfirin dan derivat-derivatnya mempunyai spektrum absorbsi yang khas pada daerah yang dapat dilihat dan pada daerah ultraviolet. Larutan porfirin dalam HCl 5% mempunyai pita absorbsi pada 400 nm yang disebut pita Soret.
Porfirin dalam asam mineral kuat atau pelarut organik dan kemudian disianari sinar ultraviolet akan memancarkan fluoresensi merah yang kuat. Sifat fluoresensi ini sangat khas sehingga sering dipakai untuk mendeteksi porfirin bebas dengan jumlah yang sedikit. Sifat absorbsi dan fluoresensi yang khas dari porfirin disebabkan oleh ikatan rangkap yang menyatukan cincin pirol. Ikatan rangkap ini tidak ada pada porfirinogen sehingga tidak menunjukkan sifat-sifat tersebut. Jika porfirinogen mengalami oksidasi dengan melepaskan 6 atom H akan terbentuk porfirin yang mempunyai ikatan rangkap.

C.    Biosintesis Heme
Tahap-tahap Biosintesis Heme
Biosintesis heme dapat terjadi pada sebagian besar jaringan kecuali eritrosit dewasa yang tidak mempunyai mitokondria. Sekitar 85% sintesis heme terjadi pada sel-sel prekursor eritoid di sumsum tulang dan sebagian besar sisanya di sel hepar. Biosintesis heme dapat dibagi menjadi 2 tahap, yaitu: (1) Sintesis porfirin; (2) Sintesis heme.
Biosintesis heme dimulai di mitokondria melalui reaksi kondensasi antara suksinil-KoA yang berasal dari siklus asam sitrat dan asam amino glisin. Reaksi ini memerlukan piridoksal fosfat untuk mengaktivasi glisin, diduga piridoksal bereaksi dengan glisin membentuk basa Shiff, di mana karbon alfa glisin dapat bergabung dengan karbon karbosil suksinat membentuk α-amino-β-ketoadipat yang dengan cepat mengalami dekarboksilasi membentuk d-amino levulinat (ALA/AmLev). Rangkaian reaksi ini dikatalisis oleh AmLev sintase/sintetase yang merupakan enzim pengendali laju reaksi pada biosintesis porfirin.
AmLev yang terbentuk kemudian keluar ke sitosol. Di sitosol 2 molekul AmLev dengan perantaraan enzim AmLev dehidratase/dehidrase membentuk porfobilinogen yang merupakan prazat pertama pirol. AmLev dehidratase merupakan enzim yang mengandung seng dan sensitif terhadap inhibisi oleh timbal
Empat porfobilinogen selanjutnya mengadakan kondensasi membentuk tetrapirol linier yaitu hidroksi metil bilana yang dikatalisis oleh enzim uroporfirinogen I sintase (porfobilinogen deaminase). Hidroksi metil bilana selanjutnya mengalami siklisasi spontan membentuk uroporfirinogen I yang simetris atau diubah menjadi uroporfirinogen III yang asimetris dan membutuhkan enzim tambahan yaitu uroporfirinogen III kosintase Pada kondisi normal hampir selalu terbentuk uroporfirinogen III. 
Uroporfirinogen III selanjutnya mengalami dekarboksilasi, semua gugus asetatny (A) menjadi gugus metil (M) membentuk koproporfirinogen III. Reaksi ini dikatalisis oleh enzim uroporfirinogen dekarboksilase. Enzim ini juga mampu mengubah uroporfirinogen I menjadi koproporfirinogen I. 
Selanjutnya, koproporfirinogen III masuk ke dalam mitokondria serta mengalami dekarboksilasi dan oksidasi, gugus propionat (P) pada cincin I dan II berubah menjadi vini (V). Reaksi ini dikatalisis oleh koproporfirinogen oksidase dan membentuk protoporfirinogen IX. Enzim tersebut hanya bisa bekerja pada koproporfirinogen III, sehingga protoporfirinogen I umumnya tidak terbentuk. Protoporfirinogen IX selanjutnya mengalami oksidasi oleh enzim protoporfirinogen oksidase membentuk protoporfirin IX. Protoporfirin IX yang dihasilkan akan mengalami proses penyatuan dengan Fe++ melalui suatu reaksi yang dikatalisis oleh heme sintase atau ferokelatase membentuk heme.


Pengendalian Biosintesis Heme
Enzim yang bertindak sebagai regulator biosintesis heme adalah AmLev sintase. Heme yang mungkin bekerja melalui molekul aporepresor menghambat sintesis AmLev sintase, dalam hal ini kemungkinan terjadi feed back negative. Obat yang metabolismenya menggunakan hemoprotein spesifik di hati (sitokrom-P450) menyebabkan konsentrasi heme intra seluler menurun. Hal ini menyebabkan represi terhadap AmLev sintase menurun. Aktivitas AmLev sintase meningkat sehingga sintesis heme juga meningkat. Pemberian glukosa dan hematin dapat mencegah pembentukan AmLev sintase sehingga menurunkan sintesis heme. 
§  Jalur HMG-CoA reduktase, mengawali pembentukan kolesterol dan isoprenoid.
§   Metabolisme sekunder, jalur-jalur metabolisme yang tidak esensial bagi pertumbuhan, perkembangan, maupun reproduksi, namun biasanya berfungsi secara ekologis, misalnya pembentukan alkaloid dan terpenoid.
Metabolisme sekunder adalah berbagai macam reaksi yang produknya tidak secara langsung terlibat dalam pertumbuhan normal. Dalam hal ini metabolit sekunder berbeda dengan bahan metabolit intermediet yang memang merupakan produk dari metabolisme normal.
















BAB III
PENTUTUP

A.    Kesimpulan
1.      Anabolisme adalah lintasan metabolisme yang menyusun beberapa senyawa organik sederhana menjadi senyawa kimia atau molekul kompleks. Sedangkan Katabolisme adalah reaksi penguraian senyawa kompleks menjadi senyawa yang lebih sederhana dengan bantuan enzim. Terdapat perbedaan diantara proses anabolisme serta katabolisme pada tumbuhan, hewan atau manusia.
2.      Fotosintesis adalah suatu proses biokimia pembentukan zat makanan atau energi yaitu glukosa yang dilakukan tumbuhan, alga, dan beberapa jenis bakteri dengan menggunakan zat hara, karbondioksida, dan air serta dibutuhkan bantuan energi cahaya matahari. Hampir semua makhluk hidup bergantung dari energi yang dihasilkan dalam fotosintesis. Proses fotosintesis tidak dapat berlangsung pada setiap sel, tetapi hanya pada sel yang mengandung pigmen fotosintetik. Sel yang tidak mempunyai pigmen fotosintetik ini tidak mampu melakukan proses fotosintesis.
3.      Proses anabolisme Jalur anabolisme yang membentuk senyawa-senyawa dari prekursor sederhanah mencakup:
§  Glikogenesis, pembentukan glikogen dari glukosa
§  Glukoneogenesis, pembentukan glukosa dari senyawa organik lain.
§  Porfirin adalah senyawa siklik yang dibentuk dari gabungan empat cincin pirol       melalui jembatan metenil (-CH=). Sifat khas porfirin adalah pembentukan   kompleks dengan ion-ion logam (metaloporfirin) yang terikat pada atom nitrogen cincin-cincin pirol.


DAFTAR PUSTAKA
Cree, Laurie. 2005. Sains dalam Keperawatan. Jakarta: Buku Kedokteran EGC
Murray RK, Granner DK, Mayes PA, Rodwell VW. 2003, Biokimia Harper, Edisi XXV, Penerjemah Hartono Andry, Jakarta: EGC
Poedjiadi, Anna. 2007. Dasar-dasar Biokimia. Jakarta: UI Press
Stryer L. 1996. Biokimia Edisi IV. Penerjemah: Sadikin dkk (Tim Penerjemah Bagian Biokimia FKUI). Jakarta: EGC
Supardan. 1989. Metabolisme Karbohidrat. Malang: Lab. Biokimia Universitas Brawijaya
Toha, Abdul, Hamid, H. 2001. Biokimia Metabolisme Biomolekul. Bandung: Alfabeta
Yazid, Eisten. 2006. Penuntun Praktikum Biokimia Untuk Mahasiswa Analis. Yogyakarta: CV Andi Offset








                                                                                                                                

Post a Comment for "Anabolisme karbohidrat"